A Network Topology is the arrangement with which computer systems or
network devices are connected to each other. Topologies may define
both physical and logical aspect of the network. Both logical and
physical topologies could be same or different in a same network.
Point-to-Point
Point-to-point networks contains exactly two hosts such as computer,
switches or routers, servers connected back to back using a single piece
of cable. Often, the receiving end of one host is connected to sending
end of the other and vice-versa.
If the hosts are connected point-to-point logically, then may have
multiple intermediate devices. But the end hosts are unaware of
underlying network and see each other as if they are connected directly.
Bus Topology
In case of Bus topology, all devices share single communication line
or cable.Bus topology may have problem while multiple hosts sending data
at the same time. Therefore, Bus topology either uses CSMA/CD
technology or recognizes one host as Bus Master to solve the issue. It
is one of the simple forms of networking where a failure of a device
does not affect the other devices. But failure of the shared
communication line can make all other devices stop functioning.
Both ends of the shared channel have line terminator. The data is
sent in only one direction and as soon as it reaches the extreme end,
the terminator removes the data from the line.
Star Topology
All hosts in Star topology are connected to a central device, known
as hub device, using a point-to-point connection. That is, there exists
a point to point connection between hosts and hub. The hub device can
be any of the following:
Layer-1 device such as hub or repeater
Layer-2 device such as switch or bridge
Layer-3 device such as router or gateway
As in Bus topology, hub acts as single point of failure. If hub
fails, connectivity of all hosts to all other hosts fails. Every
communication between hosts, takes place through only the hub.Star
topology is not expensive as to connect one more host, only one cable is
required and configuration is simple.
Ring Topology
In ring topology, each host machine connects to exactly two other
machines, creating a circular network structure. When one host tries to
communicate or send message to a host which is not adjacent to it, the
data travels through all intermediate hosts. To connect one more host
in the existing structure, the administrator may need only one more
extra cable.
Failure of any host results in failure of the whole ring.Thus, every
connection in the ring is a point of failure. There are methods which
employ one more backup ring.
Mesh Topology
In this type of topology, a host is connected to one or multiple
hosts.This topology has hosts in point-to-point connection with every
other host or may also have hosts which are in point-to-point connection
to few hosts only.
Hosts in Mesh topology also work as relay for other hosts which do
not have direct point-to-point links. Mesh technology comes into two
types:
Full Mesh: All hosts have a point-to-point connection to
every other host in the network. Thus for every new host n(n-1)/2
connections are required. It provides the most reliable network
structure among all network topologies.
Partially Mesh: Not all hosts have point-to-point connection
to every other host. Hosts connect to each other in some arbitrarily
fashion. This topology exists where we need to provide reliability to
some hosts out of all.
Tree Topology
Also known as Hierarchical Topology, this is the most common form of
network topology in use presently.This topology imitates as extended
Star topology and inherits properties of bus topology.
This topology divides the network in to multiple levels/layers of
network. Mainly in LANs, a network is bifurcated into three types of
network devices. The lowermost is access-layer where computers are
attached. The middle layer is known as distribution layer, which works
as mediator between upper layer and lower layer. The highest layer is
known as core layer, and is central point of the network, i.e. root of
the tree from which all nodes fork.
All neighboring hosts have point-to-point connection between
them.Similar to the Bus topology, if the root goes down, then the entire
network suffers even.though it is not the single point of failure.
Every connection serves as point of failure, failing of which divides
the network into unreachable segment.
Daisy Chain
This topology connects all the hosts in a linear fashion. Similar to
Ring topology, all hosts are connected to two hosts only, except the
end hosts.Means, if the end hosts in daisy chain are connected then it
represents Ring topology.
Each link in daisy chain topology represents single point of failure.
Every link failure splits the network into two segments.Every
intermediate host works as relay for its immediate hosts.
Hybrid Topology
A network structure whose design contains more than one topology is
said to be hybrid topology. Hybrid topology inherits merits and
demerits of all the incorporating topologies.
The above picture represents an arbitrarily hybrid topology. The
combining topologies may contain attributes of Star, Ring, Bus, and
Daisy-chain topologies. Most WANs are connected by means of Dual-Ring
topology and networks connected to them are mostly Star topology
networks. Internet is the best example of largest Hybrid topology
No comments:
Post a Comment